sábado, 26 de maio de 2012

curiosidade :calcula a probabilidade de ganhar na loteria








quem quer tentar fazer essa conta toda ai ?

Para quem prefere vídeo 




uma vídeo aula  de probabilidade  . as vezes vídeo ajuda mais .
Curiosidade: História da Probabilidade






O interesse do homem em estudar os fenômenos que envolviam determinadas possibilidades fez surgir a Probabilidade. Alguns indícios alegam que o surgimento da teoria das probabilidades teve início com os jogos de azar disseminados na Idade Média. Esse tipo de jogo é comumente praticado através de apostas, na ocasião também era utilizado no intuito de antecipar o futuro. 

O desenvolvimento das teorias da probabilidade e os avanços dos cálculos probabilísticos devem ser atribuídos a vários matemáticos. Atribui-se aos algebristas italianos Pacioli, Cardano e Tartaglia (séc. XVI) as primeiras considerações matemáticas acerca dos jogos e das apostas. Através de estudos aprofundados, outros matemáticos contribuíram para a sintetização de uma ferramenta muito utilizada cotidianamente. Dentre os mais importantes, podemos citar: 

Blaise Pascal (1623 – 1662)
Pierre de Fermat (1601 – 1655)
Jacob Bernoulli (1654 – 1705)
Pierre Simon Laplace (1749 – 1827)
Carl Friedrich Gauss (1777 – 1855)
Lenis Poisson (1781 – 1840) 

Os alicerces da teoria do cálculo das probabilidades e da análise combinatória foram estabelecidos por Pascal e Fermat, as situações relacionando apostas no jogo de dados levantaram diversas hipóteses envolvendo possíveis resultados, marcando o início da teoria das probabilidades como ciências. 

As contribuições de Bernoulli enfatizaram os grandes números, abordando as combinações, permutações e a classificação binomial. Laplace formulou a regra de sucessão e Gauss estabelecia o método dos mínimos quadrados e a lei das distribuições das probabilidades. 

Atualmente, os estudos relacionados às probabilidades são utilizados em diversas situações, pois possuem axiomas, teoremas e definições bem contundentes. Sua principal aplicação diz respeito ao estudo da equidade dos jogos e dos respectivos prêmios, sendo sua principal aplicação destinada à Estatística Indutiva, na acepção de amostra, extensão dos resultados à população e na previsão de acontecimentos futuros.


Probabilidade de ocorrer a união de eventos


Fórmula da probabilidade de ocorrer a união de eventos:

P(E1 ou E2) = P(E1) + P(E2) - P(E1 e E2)

De fato, se existirem elementos comuns a E1 e E2, estes eventos estarão computados no cálculo de P(E1) e P(E2). Para que sejam considerados uma vez só, subtraímos P(E1 e E2).
Fórmula de probabilidade de ocorrer a união de eventos mutuamente exclusivos:

P(E1 ou E2 ou E3 ou ... ou En) = P(E1) + P(E2) + ... + P(En)

Exemplo: Se dois dados, azul e  branco, forem lançados, qual a probabilidade de sair 5 no azul e 3 no branco?
Considerando os eventos:

A: Tirar 5 no dado azul e P(A) = 1/6
B: Tirar 3 no dado branco e P(B) = 1/6
Sendo S o espaço amostral de todos os possíveis resultados, temos:
n(S) = 6.6 = 36 possibilidades. Daí, temos:P(A ou B) = 1/6 + 1/6 – 1/36 = 11/36


Exemplo: Se retirarmos aleatoriamente uma carta de baralho com 52 cartas, qual a probabilidade de ser um 8 ou um Rei?

Sendo S o espaço amostral de todos os resultados possíveis, temos: n(S) = 52 cartas. Considere os eventos:
A: sair 8 e P(A) = 4/52
B: sair um rei e P(B) = 4/52
Assim, P(A ou B) = 4/52 + 4/52 – 0 = 8/52 = 2/13. Note que P(A e B) = 0, pois uma carta não pode ser 8 e rei ao mesmo tempo. Quando isso ocorre dizemos que os eventos A e B são mutuamente exclusivos.



Probabilidade Condicional


 Antes da realização de um experimento, é necessário que já tenha alguma informação sobre o evento que se deseja observar. Nesse caso, o espaço amostral se modifica e o evento tem a sua probabilidade de ocorrência alterada.

 Fórmula de Probabilidade Condicional
 P(E1 e E2 e E3 e ...e En-1 e En) é igual a P(E1).P(E2/E1).P(E3/E1 e E2)...P(En/E1 e E2 e ...En-1).
 Onde P(E2/E1) é a probabilidade de ocorrer E2, condicionada pelo fato de já ter ocorrido E1;
P(E3/E1 e E2) é a probabilidade ocorrer E3, condicionada pelo fato de já terem ocorrido E1 e E2;
P(Pn/E1 e E2 e ...En-1) é a probabilidade de ocorrer En, condicionada ao fato de já ter ocorrido E1 e E2...En-1.


    Exemplo:
    Uma urna tem 30 bolas, sendo 10 vermelhas e 20 azuis. Se ocorrer um sorteio de 2 bolas, uma de cada vez e sem reposição, qual será a probabilidade de a primeira ser vermelha e a segunda ser azul?

    Resolução:

    Seja o espaço amostral S=30 bolas, e considerarmos os seguintes eventos:
    A: vermelha na primeira retirada e P(A) = 10/30
    B: azul na segunda retirada e P(B) = 20/29
    Assim:
    P(A e B) = P(A).(B/A) = 10/30.20/29 = 20/87

 Eventos independentes

    Dizemos que E1 e E2 e ...En-1, En são eventos independentes quando a probabilidade de ocorrer um deles não depende do fato de os outros terem ou não terem ocorrido.
    Fórmula da probabilidade dos eventos independentes:

    P(E1 e E2 e E3 e ...e En-1 e En) = P(E1).P(E2).p(E3)...P(En)

    Exemplo:

Uma urna tem 30 bolas, sendo 10 vermelhas e 20 azuis. Se sortearmos 2 bolas, 1 de cada vez e repondo a sorteada na urna, qual será a probabilidade de a primeira ser vermelha e a segunda ser azul?
Resolução:
Como os eventos são independentes, a probabilidade de sair vermelha na primeira retirada e azul na segunda retirada é igual ao produto das probabilidades de cada condição, ou seja, P(A e B) = P(A).P(B). Ora, a probabilidade de sair vermelha na primeira retirada é 10/30 e a de sair azul na segunda retirada 20/30. Daí, usando a regra do produto, temos: 10/30.20/30=2/9.
Observe que na segunda retirada forma consideradas todas as bolas, pois houve reposição. Assim, P(B/A) =P(B), porque o fato de sair bola vermelha na primeira retirada não influenciou a segunda retirada, já que ela foi reposta na urna.





Conceito de probabilidade


Se em um fenômeno aleatório as possibilidades são igualmente prováveis, então a probabilidade de ocorrer um evento A é:


Por, exemplo, no lançamento de um dado, um número par pode ocorrer de 3 maneiras diferentes dentre 6 igualmente prováveis, portanto, P = 3/6= 1/2 = 50%

Dizemos que um espaço amostral S (finito) é equiprovável quando seus eventos elementares têm probabilidades iguais de ocorrência.

Num espaço amostral equiprovável S (finito), a probabilidade de ocorrência de um evento A é sempre:



Propriedades Importantes


1. Se A e A’ são eventos complementares, então:
P( A ) + P( A' ) = 1

2. A probabilidade de um evento é sempre um número entre Æ (probabilidade de evento impossível) e 1 (probabilidade do evento certo).





PROBABILIDADE

    A história da teoria das probabilidades, teve início com os jogos de cartas, dados e de roleta. Esse é o motivo da grande existência de exemplos de jogos de azar no estudo da probabilidade. A teoria da probabilidade permite que se calcule a chance de ocorrência de um número em um experimento aleatório

.
    Experimento Aleatório

    É aquele experimento que quando repetido em iguais condições, podem fornecer resultados diferentes, ou seja, são resultados explicados ao acaso. Quando se fala de tempo e possibilidades de ganho na loteria, a abordagem envolve cálculo de experimento aleatório.


 Espaço Amostral


    É o conjunto de todos os resultados possíveis de um experimento aleatório. A letra que representa o espaço amostral, é S.
    Exemplo:
    Lançando uma moeda e um dado, simultaneamente, sendo S o espaço amostral, constituído pelos 12 elementos:
    S = {K1, K2, K3, K4, K5, K6, R1, R2, R3, R4, R5, R6}
  1. Escreva explicitamente os seguintes eventos: A={caras e m número par aparece}, B={um número primo aparece}, C={coroas e um número ímpar aparecem}.
  2. Idem, o evento em que:
a)      A ou B ocorrem;
b)      B e C ocorrem;
c)      Somente B ocorre.
  1. Quais dos eventos A,B e C são mutuamente exclusivos

Resolução:
  1. Para obter A, escolhemos os elementos de S constituídos de um K e um número par:  A={K2, K4, K6};
Para obter B, escolhemos os pontos de S constituídos de números primos: B={K2,K3,K5,R2,R3,R5}
Para obter C, escolhemos os pontos de S constituídos de um R e um número ímpar: C={R1,R3,R5}.
  1. (a) A ou B = AUB = {K2,K4,K6,K3,K5,R2,R3,R5}
(b) B e C = B Ç C = {R3,R5}
(c) Escolhemos os elementos de B que não estão em A ou C;
B  Ç  Ac  Ç  Cc   =   {K3,K5,R2}
  1. A e C são mutuamente exclusivos, porque A Ç C = Æ